Expression of human intestinal dipeptide transporter in Xenopus laevis oocytes

(Received 25 September 1992; accepted 13 November 1992)

Abstract—The human colon adenocarcinoma cell line Caco-2 retains the H^+ /dipeptide cotransporter. To identify the structure of the human dipeptide transporter, we have examined the expression of the transporter in *Xenopus laevis* oocytes injected with Caco-2 poly(A)⁺RNA, by monitoring the uptake of bestatin, a dipeptide-like anticancer agent. The bestatin uptake in the poly(A)⁺RNA-injected oocytes was inhibited by excess glycyl-L-leucine, and showed pH dependence (optimal pH of 5.5–6.0). These observations suggest that the human intestinal dipeptide transporter can be expressed functionally in *Xenopus* oocytes.

The transport of di- and tripeptides into the intestinal epithelial cells is an active process that is mediated by the dipeptide transporter localized in the brush-border membranes [1, 2]. Studies using purified intestinal brushborder membrane vesicles have revealed that the dipeptide transporter is an electrogenic H+-coupled cotransport system that is driven by an inward H+ gradient and enhanced by a negative membrane potential [3, 4]. Interestingly, oral cephalosporin antibiotics can be transported in the intestinal brush-border membranes via this H⁺/dipeptide cotransport system [5-7]. Information about the structure of the dipeptide transporter would lead to a better understanding of the molecular mechanisms for intestinal peptide absorption. The functional expression and cloning of a membrane transporter using Xenopus laevis oocytes have been demonstrated for the intestinal Na⁺/glucose cotransporter [8] and for other transporters [9-11]. Miyamoto et al. [12] showed that the injection of poly(A)+RNA prepared from rabbit intestinal mucosal cells into Xenopus oocytes led to a functional expression of the H⁺/dipeptide cotransporter. The human colon adenocarcinoma cell line Caco-2 has recently been used as a model for studying the function of differentiated intestinal epithelial cells, including several transport activities [13-15]. We demonstrated previously that oral cephalosporin antibiotics are transported into Caco-2 cells by the H⁺/ dipeptide cotransporter [16]. In this study, we attempted to express the human intestinal dipeptide transport system functionally in Xenopus oocytes by measuring the uptake of bestatin (a dipeptide anticancer agent), which is a useful probe for the intestinal H⁺/dipeptide cotransporter [17], as well as oral cephalosporins.

Materials and Methods

Caco-2 cells obtained from the American Type Culture Collection (ATCC HTB37) at passage 18 were maintained by serial passage in plastic culture dishes (100 mm) (Falcon, Becton Dickinson, Lincoln Park, NJ, U.S.A.). In the present study, the cells were used between the 30th and 35th passage. To measure the cellular uptake of [3 H]-bestatin (12.7 GBq/mmol) (Nippon Kayaku Co., Tokyo, Japan), Caco-2 cells were seeded on collagen-coated membrane filters (3 μ m, 4.71 cm²) inside Transwell Cell culture chambers (Costar, Cambridge, MA, U.S.A.) as described previously [16]. The cell monolayers were preincubated apically or basolaterally with 2 mL of incubation medium [145 mM NaCl, 3 mM KCl, 1 mM CaCl₂, 0.5 mM MgCl₂, 5 mM D-glucose, 5 mM MES* (pH6.0) or HEPES (pH7.4)] for 10 min at 37°. The medium was then removed and 2 mL of incubation

medium containing [3 H]bestatin were added to the apical compartment with 2 mL of unlabeled incubation medium lacking bestatin added to the opposite side. The medium was aspirated at the end of the incubation period and the monolayers were rapidly washed twice with 2 mL of ice-cold incubation medium. The filters with monolayers were detached from the chambers, and the cells were solubilized cells was determined by liquid scintillation counting. The protein content of the solubilized cell monolayers was determined by the method of Bradford [18], using the Bio-Rad Protein Assay Kit (Bio-Rad Laboratory, Richmond, CA, U.S.A.) with bovine γ -globulin as a standard.

Total RNÁ was isolated from Caco-2 cells cultured for 7 days by using a cesium chloride/guanidinium thiocyanate (Fluka Chemie AG, Buchs, Switzerland) centrifugation method [19]. Briefly, Caco-2 cell monolayers (10 dishes) were disrupted by spreading 4 M guanidinium thiocyanate solution on the culture dishes. The lysates were layered onto a CsCl cushion (5.7 M cesium chloride, 0.1 M EDTA, pH 7.5) and total RNA was pelleted by centrifugation (himac CP70G, RPS40T rotor, Hitachi Co., Tokyo, Japan) for 20 hr at 85,000 g at 20°. Poly(A)+RNA was purified by oligo(dT)-cellulose (Collaborative Research Inc., Bedford, MA, U.S.A.) chromatography [20]. Approximately 40 µg of poly(A)+RNA were yielded by this method. Ovarian lobes were dissected from a female *Xenopus laevis*

Table 1. Effect of inhibitors on bestatin uptake by Caco-2 cell monolayers

Inhibitor	Bestatin uptake (nmol/mg protein/hr)	% of control
Control	16.77 ± 0.42	100
Bestatin	2.41 ± 0.06	14
Glycyl-L-leucine	1.06 ± 0.09	6
Cephradine	11.62 ± 0.20	69

Caco-2 monolayers grown in TranswellTM chambers were incubated for 1 hr at 37° with medium containing [³H]-bestatin (1 mM, 37 kBq/mL) added to the apical side (2 mL, pH 6.0) in the absence or presence of 10 mM of the inhibitor. Unlabeled incubation medium (2 mL) was added to the basolateral side (2 mL, pH 7.4). Following incubation, the monolayers were washed twice with icecold incubation medium on both sides, the cells were solubilized in 0.5 mL of 1 N NaOH and the cell-associated radioactivity was determined.

Each value represents the mean \pm SE of three monolayers.

^{*} Abbreviations: HEPES, N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid; MES, 2-(N-morpholino)ethane sulfonic acid.

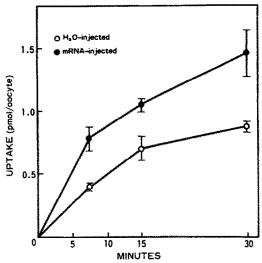


Fig. 1. Time course of bestatin uptake by *Xenopus* oocytes injected with either water or Caco-2 cell poly(A)⁺RNA. Oocytes were injected with 50 nL of Caco-2 poly(A)⁺RNA (50 ng) (●) or water (○). After incubation at 18° for 4 days, the oocytes were incubated with [³H]bestatin (30 μM, 0.37 MBq/mL) at 37°, and radioactivity associated with individual oocytes was counted. Each point represents the mean ± SE of six oocytes.

(Hamamatsu Seibutsu Kyozai Co., Shizuoka, Japan). Individual oocytes were isolated by gentle agitation in modified Barth's solution [88 mM NaCl, 1 mM KCl, 2.4 mM NaHCO₃, 0.82 mM MgCl₂, 0.33 mM Ca(NO₃)₂, 0.41 mM CaCl₂, 10 mM HEPES, 0.1 mg/mL gentamicin sulfate, pH 7.5] [21] containing 1.0% collagenase (Type IA, Sigma Chemical Co., St Louis, MO, U.S.A.) for 1 hr at room temperature (23–25°) followed by a 30–60 min incubation in 100 mM K₂HPO₄ and 0.1% bovine serum albumin (fraction V, Sigma) [22]. Then, oocytes were maintained in modified Barth's solution at 18°, and 24 hr later healthy looking oocytes were injected with 50 nL of poly(A)+RNA or water by a semiautomatic injector (Narishige Scientific Instrument Lab., Tokyo, Japan). The oocytes were

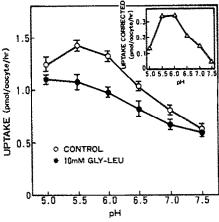


Fig. 2. pH dependence of bestatin uptake by oocytes injected with Caco-2 poly(A)⁺RNA. Oocytes were injected with 50 nL of Caco-2 poly(A)⁺RNA (50 ng) and were incubated at 18° for 6 days. The oocytes were then incubated for 1 hr at 25° with [³H]bestatin (30 μM, 0.37 MBq/mL) in the absence (Ο) or presence (Φ) of 10 mM glycyl-L-leucine. MES (5 mM) was used to buffer the incubation medium between pH values 5.0 and 6.0, and HEPES (5 mM) was used to buffer medium between pH values 6.5 and 7.5. Following incubation, the radioactivity associated with individual oocytes was measured. Each point represents the mean ± SE of five oocytes. Inset shows the curve obtained by subtracting bestatin uptake in the presence of glycyl-L-leucine from the uptake in the absence of the inhibitor.

incubated at 18° in modified Barth's solution for 4-6 days. Uptake of bestatin was assayed by placing two oocytes in 0.1 mL of radioactive uptake solution (100 mM NaCl, 2 mM KCl, 1 mM CaCl₂, 1 mM MgCl₂, 10 mM MES, pH 6.0). To enhance the uptake rate, oocytes were incubated at a higher temperature than 18° [23]. After incubation for an appropriate period, oocytes were washed rapidly four times with 1 mL of ice-cold incubation medium. Individual oocytes were transferred to scintillation vials, solubilized in 0.5 mL of 10% (W/V) SDS, and counted in

Table 2. Bestatin uptake by *Xenopus* oocytes injected with either water or Caco-2 poly(A)+RNA

Inhibitor	Bestatin uptake (pmol/oocyte/15 min)	
	Water-injected	Poly(A)+RNA-injected
Control	$0.70 \pm 0.10 (100)$	1.27 ± 0.29 (100)
Bestatin	ND	$0.72 \pm 0.08 (57)$
Glycyl-L-leucine	$0.71 \pm 0.05 (101)$	$0.75 \pm 0.06 (59)$
Cephradine	ND `	$0.74 \pm 0.03 (58)$
Glycine	ND	$1.18 \pm 0.10 (93)$

Occytes were injected with 50 nL of Caco-2 poly(A)⁺RNA (50 ng) or water. After incubation at 18° for 4 days, the oocytes were incubated with [3 H]bestatin (30 μ M, 0.37 MBq/mL, pH 6.0) in the absence or presence of 10 mM of the inhibitor for 15 min at 37°, and radioactivity associated with individual oocytes was counted.

Each value represents the mean ± SE of six oocytes. Value in parenthesis represents % of control. ND, not determined.

10 mL of scintillant fluid (ACS II, Amersham International, Amersham, U.K.).

Results and Discussion

We examined the ability of Caco-2 cells to accumulate bestatin via the H⁺/dipeptide cotransporter. As summarized in Table 1, [³H]bestatin uptake by Caco-2 monolayers was inhibited greatly by excess amounts of unlabeled bestatin, glycyl-L-leucine and cephradine, indicating that these cells express dipeptide transport activity. It is therefore suggested that Caco-2 cells are a good source for isolating the mRNA that encodes the dipeptide transport protein.

As shown in Fig. 1, bestatin uptake was greater in oocytes injected with poly(A)⁺RNA isolated from Caco-2 cells than in those injected with water. To determine whether the increased activity of bestatin transport in the poly(A)⁺RNA-injected oocytes was due to expression of dipeptide transporter, we examined the effect of dipeptides and cephradine on bestatin uptake. As summarized in Table 2, bestatin uptake in poly(A)⁺RNA-injected oocytes was markedly inhibited by the presence of excess unlabeled bestatin, glycyl-L-leucine and cephradine, but not by the presence of glycine. In contrast, the uptake in waterinjected oocytes was not affected by the presence of glycyl-L-leucine.

In addition, we studied pH dependence of bestatin uptake in oocytes injected with Caco-2 cell poly(A)+RNA. As illustrated in Fig. 2, the expressed bestatin uptake showed pH dependence with an optimal pH of 5.5–6.0, a similar pH profile of bestatin uptake having been found in the intestinal brush-border membranes [17]. Preliminarily, we also observed that bestatin uptake across the apical membranes of Caco-2 cells showed an optimal pH of 6.0 (unpublished data). Thus, the dipeptide transporter localized in the apical membranes, i.e. H+/dipeptide cotransporter, may be expressed in the oocytes injected with Caco-2 cell poly(A)+RNA. Additional studies are required to characterize the expressed dipeptide transporter, in comparison with the cellular mechanisms and regulation of dipeptide transport in Caco-2 cells.

Acknowledgements—This work was supported in part by a grant-in-aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan, and by a grant from the Takeda Science Foundation.

Department of Hospital Pharmacy School of Medicine Tokyo Medical and Dental University Bunkyo-ku, Tokyo 113, and *Institute of Basic Medical Sciences University of Tsukuba Tsukuba 305, Japan HIDEYUKI SAITO TETSURO ISHII* KEN-ICHI INUI†

REFERENCES

- 1. Ganapathy V and Leibach FH, Is intestinal peptide transport energized by a proton gradient? *Am J Physiol* **249**: G153–G160, 1985.
- Hoshi T, Proton-coupled transport of organic solutes in animal cell membranes and its relation to Na⁺ transport. *Jpn J Physiol* 35: 179-191, 1985.
- Ganapathy V and Leibach FH, Role of pH gradient and membrane potential in dipeptide transport in
- † Corresponding author: Professor K. Inui, Department of Hospital Pharmacy, School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113, Japan. Tel. (81) 3-3813-6111 ext. 6561; FAX (81) 3-5684-0677.

- intestinal and renal brush-border membrane vesicles from the rabbit. J Biol Chem 258: 14189-14192, 1983.
- Takuwa N, Shimada T, Matsumoto H, Himukai M and Hoshi T, Effect of hydrogen ion-gradient on carriermediated transport of glycylglycine across brush border membrane vesicles from rabbit small intestine. *Jpn J Physiol* 35: 629-642, 1985.
- Okano T, Inui K, Maegawa H, Takano M and Hori R, H⁺ coupled uphill transport of aminocephalosporins via the dipeptide transport system in rabbit intestinal brush-border membranes. J Biol Chem 261: 14130– 14134, 1986.
- Inui K, Okano T, Maegawa H, Kato M, Takano M and Hori R, H⁺ coupled transport of p.o. cephalosporins via dipeptide carriers in rabbit intestinal brush-border membranes: difference of transport characteristics between cefixime and cephradine. J Pharmacol Exp Ther 247: 235-241, 1988.
- Tsuji A, Terasaki T, Tamai I and Hirooka H, H⁺ gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brushborder membrane vesicles from rat small intestine. J Pharmacol Exp Ther 241: 594-601, 1987.
- Hediger MA, Coady MJ, Ikeda TS and Wright EM, Expression cloning and cDNA sequencing of the Na⁺/ glucose cotransporter. *Nature* 330: 379–381, 1987.
- Werner A, Moore ML, Mantei N, Biber J, Semenza G and Murer H, Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci USA 88: 9608-9612, 1991.
- Hagenbuch B, Stieger B, Foguet M, Lübbert H and Meier PJ, Functional expression cloning and characterization of the hepatocyte Na⁺/bile acid cotransport system. *Proc Natl Acad Sci USA* 88: 10629– 10633, 1991.
- 11. Yamauchi A, Uchida S, Kwon HM, Preston AS, Robey RB, Garcia-Perez A, Burg MB and Handler JS, Cloning of a Na⁺- and Cl⁻-dependent betaine transporter that is regulated by hypertonicity. *J Biol Chem* 267: 649-652, 1992.
- Miyamoto Y, Thompson YG, Howard EF, Ganapathy V and Leibach FH, Functional expression of the intestinal peptide-proton co-transporter in *Xenopus* laevis oocytes. J Biol Chem 266: 4742-4745, 1991.
- 13. Hidalgo IJ, Raub TJ and Borchardt RT, Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96: 736-749, 1989.
- Hidalgo IJ and Borchardt RT, Transport of a large neutral amino acid(phenylalanine) in a human intestinal epithelial cell line: Caco-2. *Biochim Biophys Acta* 1028: 25-30, 1990.
- Mohrmann I, Mohrmann M, Biber J and Murer H, Sodium-dependent transport of Pi by an established intestinal epithelial cell line (CaCo-2). Am J Physiol 250: G323-G330, 1986.
- 16. Inui K, Yamamoto M and Saito H, Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: specific transport systems in apical and basolateral membranes. J Pharmacol Exp Ther 261: 195-201, 1992.
- 17. Inui K, Tomita Y, Katsura T, Okano T, Takano M and Hori R, H⁺ coupled active transport of bestatin via the dipeptide transport system in rabbit intestinal brush-border membranes. *J Pharmacol Exp Ther* **260**: 482-486, 1992.
- 18. Bradford MM, A rapid and sensitive method for the quantitation of micorogram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* 72: 248-254, 1976.
- Chirgwin JM, Przybyla AE, MacDonald RJ and Rutter WJ, Isolation of biologically active ribonucleic acid

- from sources enriched in ribonuclease. *Biochemistry* 18: 5294-5299, 1979.
- Maniatis T, Fritsch EF and Sambrook J, Extraction, purification, and analysis of messenger RNA from eukaryotic cells. In: *Molecular Cloning: a Laboratory Manual*, 2nd Edn, pp. 7.26-7.29. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989.
- Gurdon JB and Wickens MP, The use of Xenopus oocytes for the expression of cloned genes. In: Methods in Enzymology (Eds. Wu R, Grossman L and Moldave
- K), Vol. 101, pp. 370-386. Academic Press, New York, 1983.
- Coady MJ, Pajor AM, Toloza EM and Wright EM, Expression of mammalian renal transporters in Xenopus laevis oocytes. Arch Biochem Biophys 283: 130-134, 1990.
- Ishii T, Nakayama K, Sato H, Miura K, Yamada M, Yamada K, Sugita Y and Bannai S, Expression of the mouse macrophage cystine transporter in Xenopus laevis oocytes. Arch Biochem Biophys 289: 71-75, 1991.